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Abstract
Using spontaneous conversational speech for TTS raises ques-
tions on how disfluencies such as filled pauses (FPs) should be
approached. Detailed annotation of FPs in training data enables
precise control at synthesis time; coarse or nonexistent FP an-
notation, when combined with stochastic attention-based neural
TTS, leads to synthesisers that insert these phenomena into flu-
ent prompts on their own accord. In this study we investig-
ate, objectively and subjectively, the effects of FP annotation
and the impact of relinquishing control over FPs in a Tacotron
TTS system. The training corpus comprised 9 hours of single-
speaker breath groups extracted from a conversational podcast.
Systems trained with no or location-only FP annotation were
found to reproduce FP locations and types (uh/um) in a pat-
tern broadly similar to that of the corpus. We also studied the
effect of FPs on natural and synthetic speech rate and the inter-
changeability of FP types. Interestingly, subjective tests indic-
ate that synthesiser-predicted FP types from location-only an-
notation often were preferred over specifying the ground-truth
type. In contrast, a more precise annotation, allowing us to fo-
cus training on the most fluent parts of the corpus, improved
rated naturalness when synthesising fluent speech.
Index Terms: Speech synthesis, spontaneous speech, filled
pauses, disfluencies

1. Introduction
The majority of human speech is spontaneous and conversa-
tional. Being able to reproduce spontaneity in synthetic speech
is therefore an important target for natural machine-mediated
human communication. Spontaneous conversational speech
contains a variety of phenomena which are not regularly con-
sidered in conventional speech synthesis of (and from) read
speech. One such phenomenon is filled pauses (FPs), which are
the focus of this paper. In American English FPs are generally
uh and um, typically produced with a lengthened schwa-like
vowel. Other important spontaneous speech phenomena include
disfluencies like silent pauses, repairs, repetitions, lengthenings,
and discourse markers (e.g., “like” and “you know”). When
pursuing speech synthesis from spontaneous speech material,
we face questions regarding how to approach these disfluencies
both during annotation and training, and at synthesis time.

Research indicates that FPs are not mere speech aberra-
tions, but play an important role in human dialogue [1]. For
example, the presence of FPs improves recall of speech content
in ways that cannot be accounted for merely by the fact that
adding FPs slows speech down and thus allows for additional
processing time [2]. Hesitations can in addition positively af-
fect language comprehension [3, 4], also in vocoded speech [5],
suggesting that highly natural TTS may benefit from this ef-
fect as well. Automatic generation of fillers has proven useful
to assist human operators in Wizard-of-oz data collections [6].
In a separate effect, question responses with FPs tend to be in-

terpreted as coming from increased uncertainty over responses
without FPs [7]. Adjusting the degree of fluency and the inser-
tion of FPs in synthetic speech can therefore moderate listeners’
impression of the speaker’s degree of certainty.

However, it is not evident how to harness the beneficial ef-
fects of spontaneous speech phenomena in TTS systems. Pur-
suing that goal entails questions about where to insert FPs in
synthesis, which type to use (that is, uh or um), how the sur-
rounding prosody should be altered, and how to otherwise ad-
just the fluency of the output speech more generally. An im-
portant question is if these problems can be addressed through
machine learning directly on the training corpus with con-
temporary stochastic speech synthesisers such as sequence-to-
sequence neural TTS. Alternative strategies include copying
spontaneous phenomena from natural speech (although match-
ing prompts are seldom available), manually inserting them into
the prompts to be spoken (which is labour intensive and cog-
nitively demanding), or using a “disfluency language model”
trained on large corpora of spontaneous speech transcriptions.
The latter approach may not reflect the speaker’s character-
istic manner of speaking, seeing that FP use has sociolinguistic
connotations [8], is influenced by age, gender, and personality
[9, 10, 11, 12], and exhibits shifting trends over time [13].

The purpose of this study is to investigate the effect of FPs
uh and um in the context of neural TTS trained on a large single-
speaker corpus of spontaneous conversational speech, as de-
scribed in Sec. 3. We investigate different degrees of control
over FPs in output speech, arising from differences in the level
of detail in FP annotation at training time. We consider both
the ability of stochastic TTS to replicate FP patterns from the
training data as well as the perceptual implications of differ-
ent levels of FP control in the output speech. Separately, we
also study how disfluency annotation can be leveraged to train
more fluent voices from spontaneous speech material. Through
objective evaluations (Sec. 4) and two subjective listening tests
(Secs. 5 and 6) we – among other results – find that i) neural
TTS can learn to automatically reproduce patterns in FP loca-
tion and type similar to those in the corpus, ii) that relinquishing
control over FPs can provide perceptual benefits, and iii) that a
significant majority of FPs rendered by our system are judged
as plausibly realistic by human listeners for both uh and um.

2. Related work
The majority of prior work in synthesising filled pauses con-
sider estimating where to place them and how they should sound
as two separate problems. For unit-selection TTS, [14] applied
local, speaker-dependent prosodic rules to generate synthetic
fillers, restricted to the particular case where FPs are used to
indicate an upcoming repair. Meanwhile, [15] used an n-gram
model to predict FP placement. To generate FPs they supple-
mented their main corpus of read speech with a limited amount
of spontaneous speech. This approach required the addition of
silent pauses after FPs to avoid unnatural concatenations.
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Name of voice Corpus and training Annotation of FPs Condition Prompt Resulting speech

AutoFP whole TCC none AutoFP fluent has automatically placed FPs

CtrlFP whole TCC yes, differentiating uh and um
CtrlFP-GT FPs copied from GT FPs exactly as in the prompt
CtrlFP-SW FPs opposite type as GT FPs exactly as in the prompt
CtrlFP-FL fluent no FPs

GenFP whole TCC yes, with a generic FP label for
both uh and um GenFP GT FP locations,

unspecified type
has FPs in specified locations,
type is decided automatically

HalfFluent fluent 44.4% of TCC N/A (no FPs in the training data) HalfFluent fluent no FPs

TransFluent whole TCC, then transfer
learning to the fluent 44.4% fluent TransFluent no very occasional automatically

placed FPs

Table 1: Summary of the voice configurations and the conditions used in the evaluations in this paper

In statistical parametric speech synthesis, several ap-
proaches have been suggested for the automatic insertion of
FPs into text prompts. [16] proposed a lattice-based ap-
proach weighting an RNN-based and an n-gram based speaker-
independent language model to insert specific FPs into text.
[17] extended this work, proposing data mixing approaches and
the use of a unique phone label to represent FPs, an approach
we follow in our present work. The evaluations in [18] con-
cluded on these approaches that it is not enough to insert FPs
in the right places, but they also have to sound right in the con-
text of the utterance. [19] came to a similar conclusion, in that
direct insertion of FPs into synthesised speech was detrimental
to the quality, attributing this to a need to account for the nat-
ural variability in FP durations. More recently, [20] used condi-
tional random fields and language models to insert disfluencies
into text, taking into account function and desired frequency.
Although ultimately aimed at TTS, their method was only eval-
uated on textual representations. With the exception of [15], the
above approaches all aim for a speaker-independent language
model of FPs. Methods for synthesising FPs are thus generally
targeted towards overcoming a sparsity of spontaneous speech
data required for creating spontaneous TTS.

3. Method
In this section, we describe the spontaneous conversational
speech corpus we used, and how we built TTS systems with dif-
ferences in FP content and annotation level. The experiments in
Secs. 4 through 6 then evaluate these voices to shed light on the
effects of these differences.

3.1. Corpus and transcription

The audio used in this study was sourced from the “Think-
Computers” podcast, available in the public domain from
archive.org. The podcast features product reviews and discus-
sions of technology news from two male speakers of American
English. The audio is single-channel and provided without tran-
scriptions. In the absence of clearly-delineated sentences in this
audio-only material, we applied the speaker-dependent breath-
detection method from [21] to segment the data into clean, well-
defined utterances. This segmenter relies on a CNN-LSTM net-
work trained on a small amount of coarsely-annotated seed data
with mel-spectrogram and zero-crossing rate input features. It
has been found to reliably identify breath events and speech
segments for each of the two speakers, separating these from
segments containing overlapping speech. As training data we
selected 6,218 speech segments extracted by the breath-based
segmenter [21] from 27 podcast episodes, each such utterance
starting with a breath event from the target speaker, i.e., a breath
group (BG). We refer to this as the ThinkComputers Corpus,
TCC. To obtain text prompts for training TTS on TCC, we re-

lied on automatic transcription, which has been shown [22] to
be adequate for Tacotron TTS, particularly when subsequently
phonetised using the g2p_en front-end [23]. However, the
handling of conversational phenomena differs between ASR
systems: Many systems deliberately detect and excise disflu-
encies from transcriptions, to return a more readable and fluent
text. The Google Cloud Speech API [24], for example, was
found to provide perhaps the most accurate word transcriptions,
but omits FPs and repetitions from the transcription [25]. To
identify FPs, we used IBM Watson Speech to Text with the US
English BroadbandModel, which reflects disfluencies in its out-
put. However, Watson marks these disfluencies with a single
hesitation token, not differentiating between the FP types uh
and um. FP types (as well as other hesitations like lengthen-
ings and repetitions) were identified by subsequently running
the Gentle forced aligner [26] on the audio segments and their
transcriptions. Evidently, this pipeline can produce different
levels of granularity for transcribing FPs: no transcription, loc-
ation only (with a generic label), or location and type (uh/um).

3.2. TTS systems built

We built several different voices on the spontaneous conversa-
tional TCC data, all based on the implementation [27] of the
Tacotron 2 spectrogram prediction framework [28] followed by
Griffin-Lim phase recovery [29], spectrogram inversion, and in-
verse pre-emphasis for 22.1 kHz waveform synthesis. Like in
[22], we first pre-trained a voice on the larger LJSpeech corpus
[30] (approximately 24 h of read speech) for 65k iterations, and
then trained our new systems on TCC for 150k iterations from
this checkpoint. This procedure was found to substantially re-
duce the number of mispronunciations in the final TTS [22].

Each system we trained used a different approach to dis-
fluencies, as explained below and summarised in Table 1. The
first voice, which we call AutoFP, was trained on text where
FPs were completely omitted from the transcriptions. Due to
the nature of the statistical speech synthesis in Tacotron, which
stochastically reproduces highly-likely patterns identified in the
data, this led to a synthesiser that automatically produced uhs
and ums in the output speech when fed fluent prompt texts. It is
then not possible to specify the location or type of FPs at syn-
thesis time, but they are automatically inserted and rendered by
the system. Conversely, training on texts where FPs were ex-
plicitly annotated with different, unique symbols for uh and um
produced a synthesiser that affords the user full control over the
placement of uhs and ums as if they were regular words. We
called this system CtrlFP, and used it in the evaluation to speak
in three different ways: with FPs specified in the prompt – con-
ditions CtrlFP-GT (ground truth) and CtrlFP-SW (swapped
type, the opposite of the ground truth) – and without FPs, when
given fluent text – condition CtrlFP-FL; see Table 1. The voice
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GenFP is intermediate between AutoFP and CtrlFP, in that it
was trained on same corpus with only FP locations (but not their
type) transcribed, using a single, generic label to represent both
uh and um. The generic FP label can be inserted into prompts to
synthesise speech with FPs in user-specified locations, but the
type of FP (uh/um) is decided by the synthesiser.

We also explored the utility of FP and hesitation annota-
tion in building systems for generating fluent speech. How to
synthesise fluent speech from spontaneous speech data is not
straightforward; in our TCC data, for example, most utterances
are disfluent to some degree. While the CtrlFP-FL condition is
capable of generating speech without FPs, it may still have been
influenced by the disfluent nature the training data. In fact, all
of our voices so far produce occasional false starts and repe-
titions of function words, since these are common in the TCC
material and the stochastic synthesis then reproduces these pat-
terns from the data. To create more fluent speech, we trained
two additional synthesisers, using a subset of the data compris-
ing only those utterances with no annotated FP and at most one
other disfluency (e.g., repetition, deletion, or lengthening, as
located by the Gentle forced aligner [26]). This data amounted
to 2,763 breath groups (3 h 31 min, or 44.4% of the full TCC).
The first of these voices, which we call HalfFluent, was trained
only on this fluent half of the corpus. The second voice, called
TransFluent, used transfer learning to train a more fluent voice
without fully excluding any of the corpus. Specifically, starting
from the AutoFP voice (which was trained on all of TCC), the
training of TransFluent continued for 70k iterations only on
the more fluent subset of the corpus. Informal observations in-
dicate that this voice still produces automatic FPs sporadically,
but this was not formally evaluated.

4. Objective evaluation of automatic FP
synthesis

4.1. Aim and setup

The purpose of our objective evaluations is to gain an overview
of the automatic FP insertion of AutoFP and GenFP, and an-
swer (in Secs. 4.2 though 4.5) four research questions about the
behaviour of the model. Two episodes from the podcast were
held out from TTS development to provide a benchmark for
evaluation. Using the same selection criteria as used in the cre-
ation of the corpus, 611 BGs from the target speaker were ex-
tracted from these episodes, of which 51% contain at least one
FP. These utterances were transcribed excluding their FPs and
then synthesised four times. The output is analysed in the fol-
lowing paragraphs to evaluate if, when and where AutoFP adds
FPs to the speech when none are explicitly transcribed.

Of the resulting 2,444 utterances, 76 were excluded from
the analysis because attention/stopping failed, producing gib-
berish speech.1 With the same method as in Sec. 3.1, the Gentle
forced aligner was used on the synthesised samples to identify
FPs that were generated. FPs identified at the beginning and end
of the utterance were manually reviewed as Gentle sometimes
confused these with a loud breath event and vice versa. Overall,
FPs were generated by AutoFP in 34% of the utterances.

1This is a well-known occasional failure mode of the non-monotonic
attention scheme used in Tacotron 2. However, we hypothesise that
non-monotonic attention also might be important for AutoFP to learn
to generate FPs, as these are acoustic events in training data that have
no counterpart in the transcript to attend to; see also [31] on the impact
of untranscribed words in deterministic sequence-to-sequence TTS.

FP at: B M E Held-out Synthesis p-value

49% 66% <0.001
3 23% 20% 0.109

3 17% 6% <0.001
3 3% 5% 0.055

3 3 6% 1% <0.001
3 3 1% 1% 0.844

3 3 1% 1% 0.592
3 3 3 0% 0% 0.200

Table 2: Percentage of samples containing FPs at any given
combination of the beginning (B), middle (M), and end (E) of the
breath group (utterance), for the held-out episodes (611 BGs)
as well as for AutoFP TTS of the same BGs (4 times each).
p-values are for a two-sided Fisher’s exact test for each row

4.2. Frequency distribution of FPs in synthesis

Research question 1: Do the generated filled pauses follow the
frequency distribution in the corpus?

Results show that utterances including a FP at the beginning
or at the end are as frequent in the held-out sample as they are in
the synthesis of the same utterances (Table 2). FPs are signific-
antly less likely to be inserted in the middle of the breath group
in synthesised utterances; either as the only FP or in combina-
tion with a FP at the start of the utterance.

In the synthesis, the overall distribution between uhs and
ums is almost equal (51% vs. 49%) whereas in the held-out ut-
terances um appears a little more frequently (42% vs. 58%).
Based on Fisher’s exact test, the difference in ratio of uhs to
ums does not prove to be significant, neither on an overall basis
(p = 0.69) nor when examined at the beginning, middle or at the
end of the utterance (p > 0.3 for each).

4.3. Speech rate

Research question 2: Does the insertion of FPs affect the speech
rate (in syllables per second) of the rest of the utterance in the
same way as in the corpus?

To be able to analyse the impact of FPs on the speech rate
of the remainder of the utterance without being biased by the
direct effect of the length of the FP (which tends to be longer
than syllables in speech articulation), the duration of the FPs is
subtracted from the total duration of the utterance when calcu-
lating speech rate and utterance length. Resulting speech-rate
distributions are graphed in Fig. 1. In the held-out samples, the
average speech rate drops from 4.55 to 4.32 syllables/second
(abbreviated syl/s) when FPs occur. This reduction in speech
rate is reflected in the synthesis, where the speech rate is 4.50
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Figure 1: Speech rates within the TCC corpus, the held-out and
the synthesised samples, split on whether they contain FPs



syl/s for utterances including a FP, compared to 4.89 syl/s for
speech not containing FPs. Synthesised utterances have a higher
speech rate in general, with an average speech rate of 4.76 syl/s
in synthesis compared to 4.43 syl/s in the held-out sample.

4.4. FP model

Research question 3: Is there a structure/model to automated
FP insertion, beyond reproducing positional (utterance begin-
ning/middle/end) FP frequencies in the corpus?

Two observations in the objective evaluation point towards
the existence of a FP model. First, if an utterance in the held-
out episodes contained a FP, it is more likely to contain a FP
in the synthesis as well (37% vs. 30% if the held-out utterance
contained no FP). This indicates that the content of the utterance
may be a factor in whether a FP is synthesised. Second, a FP is
more likely to occur in the corpus when the speech rate is near
the lower end of what can be achieved in a single breath group
given the number of syllables (see Fig. 2).
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Figure 2: BG length and speech rate vs. FPs in the corpus
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Figure 3: BG length and speech rate vs. FPs in synthesis

A similar, but weaker relationship between speech duration,
speech rate and the occurrence of FPs can be observed in the
synthesised samples (see Fig. 3). To test the hypothesis that a
FP-model exists within the TTS system, we built a generalised
linear model (GLM) of the binomial family to predict whether
a FP will be inserted. The binary dependent variable is whether
a FP is created in the synthesised utterance. Factors included
in the model are those that appeared to have predictive value in
the observations above. The existence of a FP in a particular ut-
terance in the held-out episodes was included, which functions
as proxy for a language model. Secondly, the speech duration
(in seconds, excluding FPs) and speech rate (in syllables per
second, excluding FPs) are included in the model, as well as the
interaction effect between these two factors. In the predicted

Dep. Variable: FP Link Function: logit
Model: GLM No. Obs.: 2368
Model Family: Binomial Df Model: 4

4-fold bootstrap
coef std err z P>|z| [P_min P_max]

Intercept -0.480 0.181 -2.66 0.01 0.01 0.03
C(FP in Orig., Treatment) 0.361 0.090 4.03 0.00 0.00 0.01
Syl/s -0.014 0.033 -0.42 0.67 0.47 0.94
SpeechDuration 0.194 0.073 2.64 0.01 0.01 0.048
Syl/s:SpeechDuration -0.059 0.013 -4.40 0.00 0.00 0.00

Table 3: GLM design, coefficients and p-value ranges for dif-
ferent subsets of the repeated synthesis

model both the presence of a FP in the original utterance as well
as the duration of the BG (excluding FPs) and interaction effect
between BG duration and speech rate proved to be significant
factors. To test the robustness of the estimated model, we used
a bootstrapping approach, removing one of the four synthesis
runs from the dataset on each iteration. In Table 3 we report
the minimum and maximum p-values for each factor under 4-
fold bootstrap. The factors with a significant contribution to the
original GLM remained significant in each of these runs.

From the results of the GLM modelling we conclude that
even in the presence of inbuilt randomness in the synthesis, a
model for FP inclusion can be found that takes into account the
lexical content of the utterance, its duration in seconds and the
duration compared to the speech rate.

4.5. Interchangeability of uhs and ums

Research question 4: Do uhs and ums differ in function or are
they interchangeable?

The 311 utterances from the held-out episodes that con-
tained at least one FP were synthesised four times with GenFP.
The overall distribution between uhs and ums remains nearly
unchanged in the synthesis. Also, the likelihood of finding
either one or the other FP appears to be determined much more
by the overall distribution of these tokens at the particular po-
sition in the utterance, than by which FP that was found in the
ground-truth realisation of the utterance by the speaker.

(a) If held-out contains um (b) If held-out contains uh

Figure 4: Sankey diagrams of FP position in the held-out data
(left in each diagram) and the synthesis (right)

Observing the distribution of the length of the different real-
isations of uh and um, the ones synthesised by the GenFP sys-
tem appear to be drawn from the same distribution as the held-
out samples. Based on a K-S test between the samples, the hy-
potheses that the distributions are the same for held-out sample
and synthesis do not get rejected for either uh (p = 0.37) or um
(p = 0.26). As seen in Figs. 5 and 6, ums are generally longer
than uhs, with BG-final ums being the longest.
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Figure 6: Boxplots of held-out and synthesised FP durations

5. Perceptual evaluation of disfluent speech
5.1. Evaluation design

For a perceptual evaluation of speech containing FPs, 20 utter-
ances were selected from the AMI corpus [32], which is a cor-
pus consisting of meetings where a group of four people discuss
the design of a new remote control. We chose to use prompts
from an unrelated corpus because FP placement tends to dif-
fer in individuals, and we wanted to be able to test how well
the voices do on other speakers’ FPs, and not only reproducing
already plausible FP locations from the source speaker. The
aim of the evaluation was to assess how much FP type mattered
in different locations. Each selected utterance contained one
FP, uh or um, in the beginning or in the middle of the utter-
ance, yielding 4 different categories. BG-final FP position was
not evaluated, because the lack of information of the speakers’
breath events in the AMI corpus. The meaning of utterance-
final FPs are often related to the subsequent utterance, and as
such are difficult to judge when taken out of context.

Each utterance was synthesised in 3 conditions: CtrlFP-
GT (GT location and type of FPs), CtrlFP-SW (GT location
but opposite type of FP), GenFP (GT location but automatic-
ally selected FP type) A pairwise listening test was designed,
yielding 60 comparisons across the 3 versions of each utterance.

It was brought to the attention of listeners that they will hear
hesitations such as uh or um in the synthetic speech samples.
Listeners were instructed to indicate if one of the two versions
hesitated more realistically (like a human), or if they were both
equally plausible. They were also given the option to choose
that neither were plausible realisations.

5.2. Results

40 native speakers of English recruited through Prolific Aca-
demic took the test. At the beginning of the utterance in 43%
of the cases ‘both are plausible’ was selected, versus 47% for
utterance-internal FPs (Fig. 7). Only in 7% of the cases were
neither of the two samples considered to produce natural hesit-
ations. The GenFP voice was considered natural significantly
more often in the middle of the utterance compared to the two
other voices, based on Fisher exact test versus CtrlFP-GT and
CtrlFP-SW (p = 0.02 and p = 0.04, respectively). At the start

of the utterance, there is no significant difference in the evalu-
ation of the three conditions in any of the pairwise combinations
(p > 0.30). With the controlled voices, the voice that produced

Figure 7: Ratio where FP from voice y was rated as plausible
when compared with voice x, incl. both being rated plausible

an um was preferred 62% more often than the rendition of uh
(p < 0.001); independent of the location in the utterance. This
observed overall preference for ums was present regardless of
gender or age of listeners.

6. Perceptual evaluation of fluent speech
6.1. Evaluation design

The aim of the second perceptual evaluation was to answer the
question: What is the best way to synthesise speech without
FPs? This is a valid concern given that FPs are present in
over half of the BGs in the training data. In order to be able to
include a reference sample from natural speech, 15 utterances
were synthesised from the held-out episodes. A MUSHRA-like
listening test was designed, including 4 synthetic versions and
a natural utterance processed through Griffin-Lim [29]. The
4 different conditions of the synthetic speech were as follows:
AutoFP synthesised until a version was produced without any
FPs, CtrlFP-FL, TransFluent, HalfFluent. The task was to
rate each sample on naturalness, which is a characteristic look-
ing for listeners’ global impression of the sample as opposed to
focusing on local features as in Sec. 5. To make sure that the
evaluated perceived differences were present persistently and
due to the systems being different, as opposed to listeners’ rat-
ings being biased by small prosodic differences resulting from
the stochastic nature of the synthesiser, each version was syn-
thesised twice, and two identical evaluations were carried out
with between-subjects design. Stimuli from both listening tests
can be found under: www.speech.kth.se/tts-demos.

6.2. Results

Each experiment was completed by 20 listeners. Based on pair-
wise Wilcoxon signed-rank tests on naturalness ratings, Half-
Fluent and TransFluent were each rated significantly better
than either the AutoFP and CtrlFP voices for fluent speech
(max. p-value 0.01); see Fig. 8. Although there is no significant
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Figure 8: MUSHRA ratings of fluent speech across both tests
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difference between the HalfFluent and the Transfluent voice
in the overall experiment (p = 0.76) in one evaluation the Half-
Fluent voice is perceived best (p = 0.02) and in the other the
TransFluent voice (p < 0.01), demonstrating the impact of the
stochastic nature of the synthesis on these similar approaches.

7. Conclusions
We have shown that not annotating FPs in the training corpus
results in the stochastic synthesiser reproducing FPs similarly
to the frequency distribution in the corpus, likely with the help
of an underlying FP model which takes into account the lin-
guistic content of the message. From a theoretical perspective,
we now have the ability to treat uh and um: a) like conventional
English words, by spelling them out in the prompt; b) like an as-
pect of prosody, by leaving them out of the linguistic message
entirely; or c) like something in between, by specifying their
location but without asserting control over type and rendering.
Perceptual tests reveal that the latter perspective most often de-
livers realistic sounding speech, but from a practical point of
view, all three of these approaches yield strategies of address-
ing FPs that can be functional and desirable, depending on the
application the TTS is deployed in. The problem of synthes-
ising fluent speech from a disfluent corpus was also addressed,
finding that minor improvements in fluent synthesis quality can
be achieved by detailed annotation that allows for removing dis-
fluencies during training.
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